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Abstract

Purpose – The paper aims at studying numerically a vapour bubble growth in uniformly
superheated liquid.

Design/methodology/approach – Time dependent mathematical and numerical models are
developed. Based on the Stefan boundary condition, the rate of heat transfer at the vapour-liquid
interface and the rate of bubble growth are calculated.

Findings – It is found that, at the initial stage of bubble growth, both the growth rate and the mean
Nusselt number at bubble interface have the maximum values, then they decrease with time; the rate of
bubble growth also has a significant effect on bubble deformation; the growth tends to keep the bubble at
its initial shape. In addition, the growth and deformation of a vapour bubble have much influence on
temperature propagation in the vicinity of the bubble-liquid interface; the temperature wake at the rear
of the bubble occurs at high Reynolds number but does not appear at low Reynolds number.

Originality/value – The paper is based on the authors’ original work, focusing on the behaviour of a
vapour bubble in uniformly superheated liquid–an issue of importance in the field of boiling and two
phase flow.
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Nomenclature
Cb ¼ constant, see equation (2)
de ¼ bubble equivalent diameter
hfg ¼ specific heat capacity of evaporation
J ¼ a determinant value of metric tensor
p ¼ pressure
r ¼ coordinate
Rb ¼ curvature radius of vapour bubble
Re ¼ Reynolds number ( ¼ rUTde/m)
S ¼ bubble surface area
Sf ¼ source term in general governing

equation, equation (1)

t ¼ time, dimensionless time
T ¼ Temperature
T1 ¼ The temperature of liquid at the

terminal boundary of bubble growth
u ¼ Cartesian velocity component in

x-direction
v ¼ Cartesian velocity component in

r-direction
U ¼ contravariant velocity component
UT ¼ bubble terminal rising velocity
V ¼ contravariant velocity component
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Vb ¼ bubble volume
We ¼ Weber number ( ¼ rUTUTde/s)
x ¼ coordinate

Greek symbols
a ¼ covariant metric tensor
d ¼ difference operator
f ¼ general dependent variable
g ¼ covariant metric tensor
h ¼ coordinate in computational space
m ¼ dynamic viscosity
r ¼ density
s ¼ surface tension
t ¼ shear stress
j ¼ coordinate in computational space
D ¼ gradient operator
G ¼ diffusion coefficient

R ¼ ratio of bubble volume at the present
step to the last

Subscripts
b ¼ values at the interface
b 2 1 ¼ values on the point one grid away

from the interface
e ¼ equivalent
g ¼ grid
o ¼ values of the gas inside bubble,

initial state
t ¼ tangential direction

Superscripts
n ¼ values at the last iteration step
p ¼ values at the predictor phase
n þ 1 ¼ values at the present iteration step

Introduction
The behaviour of a vapour bubble in uniformly superheated liquid is of fundamental
importance in the field of boiling and two-phase flow. Boiling occurs when the
temperature of the heater surface exceeds the saturated temperature, thus causing
bubble formation at nucleate centres; and at a certain condition, the nucleate bubbles will
departure from the heater wall. If the temperature of bulk liquid is above saturation, the
vapour bubbles will grow in the liquid; the analogue process is bubble collapse. Such
behaviour of bubble is often influenced by temperature and velocity gradients and the
balance of surface tension forces at liquid-gas interface. Moreover, predicting vapour
bubble behaviour in superheated liquid is an important step in modelling void growth,
bubble dynamics and boiling heat transfer of flow boiling, which have many
applications in the power, refrigeration and chemical and process industries.

In the past few years, problems of unsteady deformations of inert bubbles excluding
bubble growth, which are important for understanding bubble behaviour in
non-boiling reactors or systems, have been studied by several researchers; these
have been reviewed and reported by Clift et al. (1978), Magnaudet and Eames (2000),
Yan and Li (2002) and Yan et al. (2002), respectively. Such problems of bubble
deformation are often regarded as pure free surface flow problems of fluid dynamics. It
is assumed that the change of interfacial stresses acting on the surface of a bubble
results in a deformation of the bubble when it rises freely through an unbounded
quiescent liquid; meanwhile, the deformation of bubble is also dependent on the
characteristics of fluid flow around it, while, such characteristics is actually also
resulted from the change of bubble shape. In many practical applications, heat and
mass transfer always take place when a bubble rises in a hot liquid. Typically, for a
vapour bubble, if the temperature of the liquid exceeds its saturated temperature, a
phase change will take place at the vapour-liquid interface and the vapour bubble will
grow when it rises in the liquid.

The problems concerned with vapour bubble growth are often more complicated. The
deformation of a vapour bubble in superheated liquid is not only because of the change of
stress forces acted on the interface as fluid flowing around the bubble but also because of
the volume increase of the vapour bubble when a phase change takes place at the

Numerical
modelling of a
vapour bubble

765



interface. The co-actions and interactions between the vapour-liquid interface and the
surrounding bulk liquid constitute a complicated moving boundary problem
accompanying with heat and mass transfer; meanwhile, the movement of the
interface needs to be calculated as a part of the solution for continuity, momentum and
energy equations. In addition, the analogous problem of vapour bubble growth is of
bubble collapse, which is also a popular physical phenomenon. Early studies on vapour
bubble dynamics were based on the Rayleigh equation and its modification, which were
basically dealing with zero or one dimensional problems (Plesset and Zwick, 1953).
Wittke and Chao (1967) studied the collapse of a spherical bubble with translatory
motion; but the deformation of the bubble was not considered in their work. Cao and
Christensen (2000) simulated the bubble collapse in a binary solution; where the
Navier-Stokes equation was transformed in terms of the stream function and vorticity
method in two-dimensional axisymmetric moving non-orthogonal body-fitted
coordinates. Han et al. (2001) used a mesh-free method to simulate bubble
deformation and growth in nucleate boiling, but the flow fields were considered as a
pure two-dimensional problem, a bubble’s three-dimensional nature might have been
ignored. Fujita and Bai (1998) using arbitrary Lagrangian-Eulerian (ALE) method
simulated the growth of a single bubble attached at a horizontal surface with a constant
contact angle before its departure; but a non-slip condition was applied to the
vapour-liquid boundary, the tangential flow along the interface was not considered. Son
and Dhir (1998) also calculated the growth of a single bubble during partial nucleate
boiling on a horizontal surface by the level-set method, but the details of physical
messages of flow fields in the vicinity of the interface were not supplied. Other two
notable works on vapour bubble growth and dynamics include Buyevich and Webbon
(1996) and Mei et al. (1995a,b); in which bubble dynamics typically the microlayer
analysis has been carried out; but in their works, numerical strategies have not been
intensively discussed. Nevertheless, except the above papers which are relevant to the
present work, little information is reported about the vapour bubbles deformation and
growth in superheated liquid. In particular, few papers have been reported on
propagations of temperature fields around a growing and deforming vapour bubble.

The aim of this paper is to develop the methodology for predicting bubble
deformation and temperature field propagation induced by phase change at the
interface of a growing vapour bubble in superheated liquid. Time dependent physical
and mathematical models and according numerical procedures are developed. Based
on this, numerical simulations are carried out.

Numerical methods
Assumptions
In order to address the behaviour of a vapour bubble in uniformly superheated liquid,
the following assumptions are considered:

. The surface tension coefficient of vapour-liquid interface is a constant; surface
tension forces only change with angle of surface circumference.

. The flow and temperature fields around the bubble are axisymmetric.

. The hot liquid is unbounded quiescent incompressible Newtonian fluid.
The rising span of vapour bubble is so short that the hydrodynamics pressure
acted on the interface can be considered as a constant.
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. The vapour inside bubble is pure and incompressible; the heat transferred from
the liquid to the interface is completely used to evaporate the liquid at the
interface, this results in the net increase of bubble volume.

. The temperature inside the vapour bubble is uniform, so that the temperature
gradient is zero.

. The thermal properties for both the vapour and liquid are constant.

Governing equation and discretisation
The numerical method applied is based on a velocity-pressure formulation combined with
a finite-volume discretisation of the Navier-Stokes equations written in a non-orthogonal
body-fitted coordinate (BFC) of (j h u); where u is the azimuthal angle, measured about the
axis of symmetry. With the assumption of axisymmetry, the coordinates can be connected
with the common cylindrical coordinates of (x, r, u) as shown in Figure 1 and the
corresponding domain is also shown in the figure; where curvilinear line of that j ¼ 0 fits
the interface of gas-liquid. With respect to the (j h) system, the mapping is always defined
in such a way that the solution domain is defined by 0 # j # 1 and 0 # h # 1. A further
reference for using non-orthogonal body-fitted BFC to solve Navier-Stokes equations can
be found in authors other works (Yan and Li, 2002; Li and Yan, 2002a, b). In the present
modelling, Cartesian velocity components (u, v) are employed as dependent variables to
predict the flow and heat and mass transfer at the interface. For the study of
time-dependent bubble deformation, the moving boundary is employed and solved as a
part of solution for continuity, momentum and energy equations, in which the velocities in
convection term of the governing equations are replaced by relative velocities Ur and Vr.
The conservation equations for a general dependent variable f in the non-orthogonal
coordinate system (j, h) take the following general form:

Figure 1.
The coordinate system

and domain
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In the above equations, Sf(j,h) is the source off in (jh) coordinates, Ur and Vr are relative
contravariant velocity components which are particularly defined for the problem of
time-dependent bubble deformation; (ug, vg) are grid velocity components in Cartesian
coordinates; a, b and g are coordinate transformation parameters; J is determinant
value of metric tensor; and G represents diffusion coefficients.

The finite-volume method is applied to discretise the governing equations. With a
staggered grid arrangement, scalar quantities are located at the geometric centre of the
control volume and velocity components are displaced in two coordinate directions to
lie at the midpoints of control-volume faces.

Terminal shape of bubble growth
Two stages of predicting the terminal shape of a deformable bubble are applied. At the
first stage, the outline of a bubble profile, which is described by the position of ðxp

b; r
p
bÞ,

is calculated by the following equations:
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where the last terms in (2) are the components of the normal displacement in x-direction
and r-direction; Cb is a constant coefficient; the terms of:
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are the direction cosines of normal direction of the interface profile; DP is the imbalance
total normal stress which is expressed as:
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where Re and We are defined by the terminal velocity Ur for j ¼ 1. The second stage
of the prediction is a correction step to determine exact positions of the terminal shape.
At a new iteration step, an improved position of the interface is determined as:

xnþ1
b ¼ Rxp

b and rnþ1
b ¼ Rrp

b ð4Þ

where R is a ratio of the old volume to new volume of bubble and expressed as:
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pr 2 ›x

›j
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Bubble growth rate
When a vapour bubble of volume Vb, is introduced into superheated liquid, as
shown Figure 2. With a time increase of Dt to t þ Dt, the bubble volume is changed to
Vb þ DVb, as a result of heat and mass transfer. According to the Stefan boundary
condition, the heat is transferred from a superheated liquid around the bubble. Based on
the assumptions, this heat is completely released and used to change the liquid at interface
to vapour added into the bubble so that the volume of the vapour bubble increases
accordingly. Thus, the energy conservation equation at the interface can be expressed as:

rvhfg
dRb

dt
¼ 2ll

›T

›n

� �
S

; ðRb ¼ rjj¼0Þ; ð6Þ

where rv is vapour density, hfg the specific heat capacity of evaporation, ll the thermal
conductivity of liquid and Rb is the curvature radius of vapour bubble. The equation
shows the relationship between the local normal velocity dRb/dt and the local temperature
gradient at the interface. The temperature gradient is a function of fluid property and
time-dependent flow field; while the flow field is dependent on bubble deformation. The
temperature field is therefore a major driving force for bubble growth or deformation.

Equation (6) is normalized by the followings:

�Rb ¼
Rb

de
; �t ¼

tUT

de
; q ¼

T 2 T1

Tb 2 T1

; and �n ¼
n

de
ð7Þ

Figure 2.
The growth of a bubble

Numerical
modelling of a
vapour bubble

769



where de is the equivalent diameter of bubble. So, the dimensionless version of
equation (6) is obtained as:

d �Rb

d�t
¼ 2
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›q

› �n

� �
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ð8Þ

By introducing the Jacob number:
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rl cpl Tb 2 T1ð Þ
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ð9Þ

where cpl is the heat capacity of liquid. Thus, equation (8) can be expressed as:
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¼ 2
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›q

›n

� �
S

ð10Þ

This equation shows that the local normal velocity is dependent on the local
temperature gradient at the interface. It can be used to determine the local normal
displacement resulted from the phase change taken place at the interface. If integrating
equation (6) over the area of the bubble surface, the total energy conservation for the
bubble can be expressed as:

rvhfg
dV b

dt
¼ 2

Z
S

ll

›T

›n

� �
b

dS ð11Þ

where Vb is the bubble volume, S the area of bubble surface closing the volume Vb, and
dVb/dt bubble growth rate. Equation (11) can be used to determine the change rate of
total volume of the bubble. Similarly, equation (11) can be normalized by using the
relations defined in equation (7), and combining the following equations:

�Vb ¼
V b

V b0
; �S ¼

S

S0
and �t ¼

tUT

de
ð12Þ

where Vb0 and S0 are the volume and surface area of the bubble at an initial stage,
respectively. So that the dimensionless version of equation (11) can be written as

d �Vb

d�t
¼ 2

6Ja

RePr
�S

Z
›q

› �n

� �
d �S ð13Þ

Equation (13) is an expression of determining the change rate of bubble volume, and it
is called bubble growth rate in this study. The time term of the equation can be
integrated over the dimensionless time interval of D�t using a full implicit differencing
scheme, and the term on the right-hand side of the equation is integrated by numerical
integration, so that the discretisation form is given by:

�V
nþ1
b 2 �V

n

b ¼ 2
6JaD�t

RePr

Xni

i

›q

›�n

� �
b;i

D �Si: ð14Þ

This equation is used to predict the volume change of a vapour bubble in a hot liquid.
On the above basis, the mean Nusselt number at the bubble interface is defined as:
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For simplicity and clarity of the notation, the top bar for the above dimensionless
parameters will be omitted in the later presentations of the numerical results.

The application of “space conservation law” (SCL)
For flow problems with time dependent moving boundaries, it is necessary to employ
the SCL (Demirdzic and Peric, 1988). In mathematics, the SCL can be obtained from
equation (1) by setting f ¼ 1, G ¼ 0, S(j,h) ¼ 0 and (u,v) ¼ 0, and this results in:
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›

›j
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›r

›h
2 vg

›x

›h

� �
þ

›

›h
vg

›x

›j
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›r

›j

� �
: ð16Þ

Equation (16) implies that the time derivative of the computational cell volume is
closely related to the grid velocity. To satisfy the SCL, the grid velocities can be
calculated by the definitions of Ur and Vr in equation (1), and the metric tensor J can
be updated through equation (16). The final discretised form of equation (16) is solved
by applying the SIMPLE algorithm (Patankar, 1980).

Numerical procedures
To predict the deformation of a growing vapour bubble, the transport equations are
solved by iteration procedures and appropriate boundary conditions. The numerical
procedure proposed is summarised as follows:

(1) assume an initial shape of bubble, for example, spherical, being at rest in
stagnant hot liquid.

(2) Generate a non-orthogonal grid to match the bubble shape.

(3) Obtain convergence solutions for the discretised transport equations based on
equation (1) by using the SIMPLE algorithm [12].

(4) Move the grid point on the bubble surface by using equation (11) combining the
calculation of equations (2)-(5) at a new time step.

(5) Generate a new grid, calculate grid velocities at all nodes and applying the SCL
to update the determinant value of metric tensor to guarantee a basic
requirement for space conservation.

(6) Repeat (3) , (5) until all equations and boundary conditions are satisfied.

Results and discussion
The time scales applied in all calculations of this paper are dimensionless; but to
simplify the representation the top bar of �t is omitted and expressed as t in the
Figures 2-7.

Bubble growth rate and heat transfer
The growth rate of vapour bubble defined by equation (13) and the mean Nusselt
number at bubble interface are calculated using the method developed in this
paper. Four cases for (Re, We) ¼ (2,20), (Re, We) ¼ (20,15), (Re, We) ¼ (100,6) and
(Re, We) ¼ (200,4) are calculated, respectively.
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Figure 3 shows the growth rate of bubble volume and mean Nusselt number changing
with dimensionless time at (Re, We) ¼ (2,20). As Re ¼ 2 and the term of Ja/RePr on the
right hand side of equation (13) is almost a constant for given bulk liquid, so that the
growth rate and mean Nusselt number have almost the same magnitude for the whole
process of bubble growth. Moreover, as the temperature gradient is higher at initial
stage of growth than at the intermediate and final stages, the rates of bubble growth
and heat transfer are the highest at the initial stage. Figures 4(a) and (b), respectively,
show the relations between the growth rate and mean Nusselt number at different Re
and We. At higher Reynolds number, the magnitude of bubble growth rate is different
from that of mean Nusselt number; with time marching, the mean Nusselt number
increases with Reynolds number, but the growth rate does not.

Bubble growth and deformation
Figure 5 shows the results of vapour bubble growth and deformation. At the initial
stage, the bubble tries to keep its initial shape (in the present calculation, the initial
bubble is assumed to be spherical, as it is simple). By reaching to the intermediate
stage, the bubble deformation starts to take place; this is greatly dependent on the
terminal value of Reynolds and Weber numbers. At low Reynolds number and
relatively large Weber number, as shown in Figure 5(a) (Re, We) ¼ (2,20), the bubble
almost maintains its initial shape of spherical without a notable deformation (except
the volume increase) until the computational terminal state. In such a situation, the
bubble growth may actually play the same role as the surface tension force, which
makes the bubble tend to be its initial shape of spherical. With increasing of Reynolds
number and decreasing of Weber number, as shown in Figures 5(b) and (c), the bubble

Figure 3.
Bubble volume growth
rate and mean Nusselt
number versus time
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Figure 4.
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Figure 5.
Evolution of bubble shape
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experiences a larger deformation at the intermediate and final stages; this indicates
that the inertia forces at the interface are larger than the sum of the surface tension and
growth forces. Typically, at high Reynolds number, the path of bubble growth and
deformation is from a spherical to a fore-flatted and aft-spherical dimpled at
intermediate stages, and then it change its shape from a fore-flatted and aft spherical to
a fore-spherical and aft-flatted dimpled, as shown in Figure 5(c).

A comparison is made to show the difference between a vapour bubble and a same
sized inert bubble (Li et al., 2003). At the same Reynolds and Weber numbers, Figure 6
shows the evolution of these two types of bubbles, respectively; significant differences
can be identified. The terminal steady shape of the inert bubble is a dimpled at t ¼ 4.5,
looks like a crescent, while the vapour bubble with growth is an ellipsoidal at the same
dimensionless time. With time marching, the shape of the vapour bubble becomes
fore-spherical and aft-flattered ellipsoidal.

Propagation of temperature field
Figure 7 shows the propagation of temperature fields in the vicinity of growing and
deformed bubbles. The propagation of temperatures is mainly dependent on the bubble
growth and deformation. At low ratio of Reynolds number to Weber number, as shown
in Figure 7(a), the effect of convection on the temperature field is weaker than diffusion
so that the field is nearly uniform around the bubble; but the distribution is
significantly inhomogeneous at the front and rear stagnant points. This is because the
non-uniform bubble growth results in an inhomogeneous outwards normal velocity at
the interface, and the inhomogeneity decreases with time. Typically, the temperature
contours are not parallel with the interfacial outline at initial stages of bubble
deformation; as the bubble growing and deforming, the temperature wake does not
appear in the rear of the bubble.

At a high ratio of Reynolds and Weber numbers, the convection becomes stronger so
that the temperature wake is formed behind the bubble. Figure 7(b) shows the
propagation of temperature at (Re, We) ¼ (20,15), and Figure 7(c) shows the case at
(Re, We) ¼ (200,4). It is seen that the temperature wake not only changes with Reynolds
and Weber numbers but also changes with time. It is notable that at a certain ratio of
Re/We, with time marching, the volume of the wake becomes bigger and bigger. With a
larger ratio of Re/We, the bubble takes longer to reach its terminal shape.

Conclusions
In this paper, a numerical procedure is proposed to determine improved positions of the
bubble-liquid interface at each time step with a whole iteration. Using the code and the
methods developed in the present study, a complete numerical solution is obtained for

Figure 6.
A comparison of evolution

of bubble shape at
Re ¼ 20 and We ¼ 15
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Figure 7.
Propagation of
temperature fields
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the growth and deformation of a vapour bubble in superheated liquid, this can be
summarised as follows:

(1) he rate of vapour bubble growth and the mean Nusselt number change with
time; they are the maximum at the initial stage, and then decrease until a certain
value.

(2) The rate of bubble growth and the mean Nusselt number are dependent on
Reynolds and Weber numbers. The growth rate is inverse proportional to the
ratio of Reynolds to Weber numbers, while the mean Nusselt number is
proportional to the ratio.

(3) The growth and deformation of vapour bubble at different ratios of Re/We
are calculated. The results show that, at the initial stage of evolution, the bubble
tends to be its initial shape, but the changes in shape are quite different at the
intermediate stages of evolution in particular at high ratio of Re/We.

(4) The rate of bubble growth has a significant effect on the bubble deformation.
The growth makes the bubble tend to be its initial shape such as spherical.

(5) The vapour bubble growth and deformation have a great influence on the
propagation of temperature fields. The temperature wake behind the bubble
does not appear at low Reynolds number, but it occurs at high Reynolds number.
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